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Abstract
Starting out from the recently established quantum correlation function
expression of the characteristic function for the work performed by a force
protocol on the system in Talkner et al (2007 Phys. Rev. E 75 050102 (Preprint
cond-mat/0703213)) the quantum version of the Crooks fluctuation theorem
is shown to emerge almost immediately by the mere application of an inverse
Fourier transformation.

PACS numbers: 05.40.−a, 87.16.−b, 87.19.Nn

Work and fluctuation theorems have ignited much excitement during the recent decade
[1–4]. These theorems have prompted further theoretical investigations [5–8] as well as
experimental research [9]. We here consider a quantum system staying in weak thermal
contact with a heat bath at the inverse temperature β until a time t0. At time t0 the contact
to the heat bath is then either kept at this weak level, or may even be switched off altogether.
A classical time-dependent force solely acts on the system according to a prescribed protocol
until time tf . A protocol defines a family of Hamiltonians {H(t)}tf ,t0 which govern the time
evolution of the system during the indicated interval of time [t0, tf ] in the presence of the
external force. The weak action of the heat bath on the system can be neglected for any
protocol of finite duration tf − t0 [10]. The work performed by the force on the system is
a random quantity because of the quantum nature of the considered system and because the
system is prepared in the thermal equilibrium state

ρ(t0) = Z−1(t0) exp{−βH(t0)} (1)

which is a mixed state for all finite β. Here, Z(t0) = Tr exp{−βH(t0)} denotes the partition
function. As a random quantity, the work is characterized by a probability density ptf ,t0(w)

or equivalently by the corresponding characteristic function Gtf ,t0(u), which is defined as the
Fourier transform of the probability density, i.e.

Gtf ,t0(u) =
∫

dw eiuwptf ,t0(w). (2)
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In a recent work, [11] we have demonstrated that the characteristic function Gtf ,t0(u) of the
work can be expressed as a quantum correlation function of the two exponential operators
exp{iuH(tf )} and exp{−iuH(t0)}. It explicitly reads

Gtf ,t0(u) = 〈eiuH(tf ) e−iuH(t0)〉t0
≡ Z−1(t0) Tr U+

tf ,t0
eiuH(tf )Utf ,t0 e−iuH(t0) e−βH(t0),

(3)

where the index at the bracket signifies the fact that the average is taken over the initial density
matrix ρ(t0).

For a protocol consisting of Hamiltonians H(t), each of which is bounded from below
and has a purely discrete spectrum, the characteristic function Gtf ,t0(u) is an analytic function
of u in the strip S = {u|0 � Im u � β,−∞ < Re u < ∞} 1 where Re u and Im u denote the
real and imaginary parts of u, respectively. Collecting the two exponential factors e−iuH(t0)

and e−βH(t0) into one, and introducing the complex parameter v = −u + iβ ∈ S, we find

Z(t0)Gtf ,t0(u) = Tr U+
tf ,t0

ei(−v+iβ)H(tf ) Utf ,t0 eivH(t0)

= Tr e−ivH(tf ) e−βH(tf ) Utf ,t0 eivH(t0) U+
tf ,t0

= Tr e−ivH(tf ) e−βH(tf ) U+
t0,tf

eivH(t0) Ut0,tf

= Tr U+
t0,tf

eivH(t0) Ut0,tf e−ivH(tf ) e−βH(tf )

= Z(tf )Gt0,tf (v), (4)

where we used the unitarity of the time evolution operator, i.e. U+
tf ,t0

= U−1
tf ,t0

= Ut0,tf . We
hence obtain

Gtf ,t0(u) = Z(tf )

Z(t0)
Gt0,tf (−u + iβ). (5)

The ratio of the canonical partition functions can be expressed in terms of the difference of free
energies �F between the two thermal equilibrium systems as Z(tf )/Z(t0) = exp{−β�F }.
The quantity Gt0,tf (v) coincides with the characteristic function of the work performed on a
system that is initially prepared in the thermal equilibrium state Z−1(tf ) exp{−βH(tf ) under
the influence of the time-reversed protocol {H(t)}t0.tf . Applying the inverse Fourier transform
on both sides of equation (5) we obtain the following fluctuation theorem:

ptf ,t0(w)

pt0,tf (−w)
= Z(tf )

Z(t0)
eβw = e−β(�F−w). (6)

It relates the probability density of performed work for a given protocol to that of the work for
the time-reversed process. This process can in principle be realized by preparing the Gibbs
state Z−1(tf ) exp{−βH(tf )} as the initial density matrix and letting run the time-reversed
protocol {H(t)}t0,tf .

In the classical context this fluctuation theorem was proved by Gavin Crooks [4], while
its quantum version goes back to Hal Tasaki [6].
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1 This can be proved in the same way as the analyticity properties of equilibrium correlation functions that underly
the KMS condition, cf [12].
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